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ABSTRACT

Thrust in flight is derived from readings of
engine parameters which are preferably calibrated
in an Altitude Test Facility. A new refined theory
is proposed for estimation of engine calibration
uncertainty and its transfer to the in-flight
thrust calculations of a multi-engined aircraft.
The older simpler theory is shown to over-—estimate
the in-flight uncertainties. Examples are given of
various possible arrangements for the engine cali-
brations using both an Altitude Test Facility, and
a Sea Level Static Test Bed and of the application
of these calibrations to flight measurements.

NOTATION

Symbol Description Units
A either (a) flow area o

or (b) IC(Fy:Cg) non=D
ATF Altitude Test Facility
B either (a) "2¢" limit of Bias as approp.

or (b) IC(Fy:Cpg) non-D
Cp Discharge Coefficient non=-D
Cg Thrust Coefficient by "AP"

method non~D
Cx Thrust Coefficient by "W .JT"

method non-D
EL( ) "20" Error Limit of ( ) as ()
Fg Gross Thrust kN
Fn Net Thrust kN
IC(y:x4) Influence Coefficient as y/xj

ie Z ch in y for 1% ch in x4
LCV Lower Calorific Value of fuel J/kg
L number of engines non-D
m number of tests in Class II non-D
n number of items in Class I non-D
P probability non-D
Poell cell static pressure kPa
Pg static pressure kPa
Pe total pressure kPa
q Kinematic pressure (}pV?) kPa
S either (a) estimate of Standard

Deviation

as ap?rop.
or (b) surface area o

SLSTB Sea Level Static Test Bed

Tg static temperature X

Te total temperature K

tos 95% value of Student's "t" non-D

U "20" limit of Uncertainty as approp.
W mass flow rate kg/s

x5 general input parameters as approp.
y general output result as approp.
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Symbol Description Units
o( ) Standard Deviation of ( ) as ()
Suffices
0 free stream (upstream infinity)
1 intake 1lip
2 compressor face
3 combustion chamber inlet
4 turbine inlet
5 turbine exit
6 reheat inlet
7 nozzle inlet
8 nozzle throat
9 nozzle exit
00 downstream infinity
air meter
a one example of a parameter
b another example of a parameter
FC combustion chamber fuel
FR reheat fuel
i general input parameter

1. INTRODUCTION

The 'measurement' of the drag of an aircraft
in flight is a very indirect process - there is no
drag balance available in the sky as there is in
the wind tunnel. Hence the drag is inferred as
being equal to the thrust, with allowances for
accelerations and changes of altitude. In practice
a detailed bookkeeping system must be agreed bet-—
ween airframe and engine interests so that the
interface between thrust and drag is properly
accounted. Items such as intake spillage drag and
exhaust jet interference drag must be mutually
agreed.

Having reached this agreement on the thrust/
drag interface, the problem simplifies somewhat
to the in-flight 'measurement' of standard net
thrust. Even this is indirect. The gross thrust
can only be found from correlations against various
parameters such as pressures, temperatures and
areas which can be measured in flight. The same
applies to the so-called 'ram drag' for which pur-
pose the mass flow is also found from correlations
against suitable measurable parameters in flight.

These correlations for gross thrust and mass
flow must be established by engine calibrations,
preferably in an Altitude Test Facility (ATF), or
possibly in a Sea Level Static Test Bed (SLSTB).
The uncertainty of the engine calibration coeffic-
ients is transferred to the aircraft in flight.
This uncertainty transfer process involves the con-
cepts of different error classes, of linked thrust
methodology, and of independence between engines.
The treatment has been over-simplified in the past
leading to over-estimation of uncertainty of the



in-flight thrust and to improper decisions about
the relative values of ATF vs SLSTB engine
calibrations.

The main purpose of the present Paper is to
explain the more refined theory of uncertainty-
transfer from engine calibration to the aircraft in
flight. The paper concentrates on a single thrust
method, ie a linked "AP" method using calibrated
nozzle coefficients, in order to explain the uncer-—
tainty-~estimation procedures. But in practice it
is recommended that many different in-flight thrust
options be kept open and that the final flight test
results should take cognizance of results from
several options, possibly by the use of a weighted
mean value.

2. PRINCIPLES OF ERROR ESTIMATION

2.1 Definition of terms

Attempts have been made in recent years to
define the words "Accuracy" and "Precision'. For
example Abernethyl, and also a British Standard?
both propose that "Accuracy" be associated with
absence of "Bias" or "Systematic error", while
"Precision” be associated with absence of "Random
Error". The present writer is sympathetic to these
definitions, although it is difficult to apply the
words consistently because they are already in such
common use in many other senses. A new difficulty
has recently become apparent which is that some
errors can be regarded as systematic in the short
term, but random in the long term. To overcome
this difficulty such error has been assigned to a
numerical Class II (see Section 2.3.1) and the
words "Accuracy” and "Precision" have been freed
from control.

A logical difficulty with words like "Accuracy"
and "Precision" is that their emotive sense is opp-
osite to their numerical sense. When errors
increase the "Accuracy" increases numerically, from,
say *1 per cent to *2 per cent - but emotively this
is a decrease in accuracy! This difficulty can be
avoided by the use of the word "Uncertainty'.

Abernethy1 defines "Uncertainty'", U as the sum
of a Bias and a Precision.

+(B + tos S) (1)

The present text uses the word "Uncertainty"
to indicate a "2¢" Error Limit, EL (see Appendix
Al) but instead of the simple arithmetic addition
of Bias, B and Precision, t9sS as in Equation (1),
it is thought to be more logical tc regard B as the
semi-range of a rectangular distribution and then
to combine by root-sum~squares, RSS because B and S
are independent of each other (see Appendix A3):-

/BZ + [ tesS]? (2)

The formal justification of this approach is given
by Dietrich3. However, Equation (2) must be trea-
ted with great care as Bias, B is in a different
error class (Class ITI) from Precision, tos$
(Class I) as explained below. If these distinc-
tions are not noted, then it might be safer to
stick to Abernethy's Equation (1) for general use.
But the class—qualified RSS treatment is required
for the refined theory of the present text.

U =

Uy =

It is important to understand and recognise
the difference between an individual "Error" and an
"Error Limit" (see Appendix Al). A difficulty is
that an individual "Error" can not usually be seen;
nevertheless it is an important theoretical concept
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as a single, particular value of discrepancy. The
"Error Limits" are the range of values between which
the individual "Error" probably lies.

It is worth pointing out the two possible
opposite directions of approach which can be emp-
loyed in Error Estimation. The forward direction
is called "Prediction Synthesis" in which the un-
certainty of a result, which may not have occurred
yet, is predicted by considering the combination of
contributing sources of error. The backward direc-
tion is called '"Post Test Analysis" in which actual
experimental results are examined in order to de-
duce the uncertainty of the true value. The exam—
ples in the following Sections of this Paper con-
cern only "Prediction Synthesis'.

2.2 The Question of Independence in the

Combination of Errors

The central theme running through this Paper
is the need to comsider whether errors are Indepen-
dent or Common before attempting to calculate their
combined Uncertainty. A Root-Sum—Squares combina-
tion, shown in its simplest form in Appendix A2, is
justified only if the two items x5 and xp are inde-
pendent. If any error is common to both x, and xp,
ie linked by some definite effect, then a RSS com—
bination is not justified and an arithmetic combin—
ation should be applied instead, as explained in
Appendix A3.

Unfortunately, both Independent and Common
errors are mixed together in most real life situa-
tions and so the valid treatment becomes very com-
plicated. Section 3 of this Paper attempts to un-—
ravel one such complicated case.

The Question of Independence has many aspects
as discussed in Section 2.3 below.

2.3 Aspects of error independence

2.3.1 Classes of error

The basis of this classification is the degree
of activity of the error during certain time scales.
Those errors which change quickly between one scan
and the next are assigned to Class I. This has
been associated with the word "Precision'. Class I
errors are completely Independent time-wise, and

hence Error Limits of successive readings may be

combined by RSS to get the EL of the mean value.

At the other extreme, those errors which remain
fixed over a long time scale, covering a complete
test series, are assigned to Class III. This has
been associated with Systematic Error or Bias.
Class III errors are completely Common, time-wise.
Now, there is often reason to suspect the existence
of an intermediate type of error which remains con-
stant (ie Common, time-wise) during the course of
one test period, but which shifts to some other
level (ie Independent time~wise) for the next test
period. An example might be room temperature
affecting an experiment on one day, changing to
another level on the next day. This is assigned to

Class 1I. Thus we have:

Class I: short term random error during a single
test period

Class II: medium term random error between differ-

ent tests, but fixed during one test
Class III: long term systematic error.

The main reason for using these error classes
is to prevent a false impression of ‘accuracy' in
the mean value of n test points taken during a
single test period = each of these test points



would have a fixed Class Il error, and a fixed
Class III error, which are not reduced by taking
the mean value (ie the RSS process is invalid bet-
ween Common items). To formulate a rule, suppose
there are n test points in each of m different
tests and an overall mean value is found of the
result:

Iy 3)

Overall mean value, y = p_—

Then the Error Limit of y is:

1

By 1,10 @ [ELI(y)]2 + 2 [ELH(y)]2 +

[ELm@)r )

where EL, (y) is the Class I "2¢" Error Limit
ELII(y) is the Class II "20" Error Limit

ELIII(Y) is the Class III "20" Error Limit

2.3.2 1Independent and common errors between
engines

It has been noted experimentally that the
uncertainty of the total thrust of a multi-engined
aircraft, expressed as a percentage, is less than
that of a single engine. Reference 4 illustrates
this phenomenon for the 6-engined XB-70 airplane.

In general, for an aircraft with 2 engines,
suppose:

10 per cent, say

_1
7 X 10% of total FN (5)

EL{(one engine FN)

If the engines are Independent then:

2 2
Z[%XIO]Z
1

[}

EL (total Fy from 2 engines)

L. 10% (6)

Vi

If each engine had different numerical values of
independent EL, we would have:

EL(total FN from 2 engines)

7
% | EL(each engine F_)
N
= Iz . )
1

If the errors were Common to all engines then:

[}

EL(total FN from 2 engines) 2 x [%-x IOZ]

= 107 (8)
ie just the same as for one engine.

In practice some errors are Independent eg
nozzle areas, while other errors are Common eg
calorific value of fuel., In such cases of mixed
Independent and Common errors, the Error Limit of
Fy for the multi-engined aircraft would be:-

(a) with similar numerical value independent EL
in each engine
(ie all engines calibrated in same test
facility)

ZEL (total Fy from % engines) =
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2
[i— x ZEL (each engine Fy due to indepen errors;]-

/2 )

2
+ [ZEL (each engine Fy due to common errors)]

9

(b) with different numerical value independent EL
in each engine
(ie engines calibrated in different test
facilities)

ZEL (total Fy from £ engines) =

2
2 [zEL (each engine FN due to indepen errors;]

2. z 1

1 i

2
+ [ZEL (each engine FN due to common errors)]

2.3.3 Linked thrust methodology (10)

In the preceding Section a situation was des-
cribed in which independent errors lead to a more
beneficial result than common errors. In this
Section the opposite result obtains: common errors
are more beneficial. The essential difference is
that here the quantities with Common error (ie Gross
Thrust and 'Ram Drag') are to be subtracted:
previously the quantities (individual engine Net
Thrusts) were summed.

The phenomenon has been well explained by
Burcham® who used the title "TIW method" for the
case of common errors and "AP method"” for independ-
ent errors. The present writer prefers the title
"Linked Methodology" for the case of common errors.

A brief reminder of the explanation is as
follows. Net thrust is given by:

FN = FG9 -FGo

If the errors in Fgy and Fp are Independent then
from Equation (Al4) of the Appendix

a1

- 2
EL(F.) EL(F. )
e O
N Ge
2
EL(Fy,)
+ |IC(FiFg ) _—FE;_— (12)

To illustrate by numerical example, suppose we had
an Fg/FyN ratio of 2, say, then:

IC(F,,: = 2

niFg,)
and IC(FN:FGo)
and putting the Independent ELs of Fpe and Fgo equal
to one per cent each, then:

= -1

EL(FN)

—E . /[2 x 1]2 " [-1 % 1]’ = 2.247 (13)

N

1If, on the other hand, the errors in Fg and
FGo are Common, then:



EL(Fy) EL(FG9)
- = IC(F :F, ) X —ww 4+ IC(F_ :F, )
FN N'"Go FG9 N'" Go
EL(F. )
x .___G.?._. (14)

Foo

Inserting the same numerical values as before:
F
EL(F))

y

= 2x1=-1x1 = 12 (15)

which is a big reduction from the 2.24% given by
Independent errors.

Any method which leads to Common errors in
Fge and Fgo will produce ;Eis beneficial effect.
For example, to use a "W /T" correlation for Gross
Thrust (ie Burcham's "TTW" method) will automatic-
ally involve Common error in Fgo due to mass flow.
It is also possible for an "AP" method to be
"linked" if both Fg and W are correlated against
nozzle "AP".

However, if nozzle "AP" is used to give Fgy,
but some other part of the engine, such as fan
correlation is used to give mass flow (ie what
Burcham calls his "AP" method), then this is
unlinked methodology.

An interesting, and previously unnoticed,
aspect of Linked Methodology is to be found in the
transfer of calibration error from Engine Test Bed
to flight. This is explained in Section 3.2.

2.4 Transfer of a calibration uncertainty
(Example of Test Bed Airmeter)

Before dealing with the more complex case of
Engine Calibration coefficients in Section 3.0, it
is helpful to consider the simpler example of the
Test Bed Airmeter calibration.

In a typical installation, when a new airmeter
is introduced, it is usual to calibrate it.
Special instrumentation rakes are fitted a little
downstream of the airmeter measuring plane. Such
rakes may carry up to 100 pitot tubes to explore
the Py profile. A static pressure survey, and
possibly a temperature survey are also made. Allow-
ances are made for aerodynamic interference between
this extra instrumentation and the permanent air-
meter instrumentation.

The airmeter is operated over the complete
range of mass flow rates, at various levels of
temperature and pressure, and readings are taken of
the "rake" instrumentations at the same time as
readings of the fixed airmeter instrumentation.

The results are expressed in the form of values of
Airmeter Discharge Coefficient, Cpp:

(WR given by rake instrumentation)

CDA = (WA given by fixed instrumentation)

(16)

A graph of all the results might be as shown
in Figure 1 below:

Curve

Wa

.

FIG.1 ILLUSTRATION OF
AIRMETER CALIBRATION

In any one run a best curve may be drawn with
short term random scatter (Class I) about it. By
the very act of fitting the curve the Class I Error
Limit is reduced approximately by the factor 1/./n,
like a mean value:

ELI(CDA curve for single run) =

l—-ELI (spot point C (17)

n

DA)

Differences between curves for different rums
(Class II) will usually be seen, as shown exaggera-
ted in Figure 1. Suppose there were m different
runs, the Error Limit of the overall best curve is
reduced approximately by the factor 1/ .J/m:

ELII (Overall best C curve) =

DA

1 .
—; ELII (different C

runs) (18)

DA

In addition there must be long term (Class III)
systematic error applied to all results, which is
not reduced at all by curve fitting.

Taking all Classes of Error into account, the
uncertainty of the overall best curve is:

EL (Overall best C_, curve) =

1,11,1I DA

1 . ]’
\/Eﬁ [ELI (spot point CDA) +

2 2
1 .
b [ELII(dxffetent CDA tests)] + [ELIII(CDA)]

(19)

The overall best Cpp curve is transferred to
the test bed computer program for use in all future
engine tests. The uncertainty given by Equation
(19) is also transferred, but the important thing to
note is that all this CpA uncertainty is frozen
exclusively into Class II1 by the act of Cpa

transfer. It becomes "fossilised’. What was once

1iving is now dead and possibly buried out of sight.
A moment's thought will convince the reader that
Class I scatter, for example, is not transferred as
scatter, but is transferred as a contribution to the
fixed long term uncertainty of the Cpa curve position.
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This transfer of airmeter calibration uncer-
tainty is indicated at the top of Table I. The
more complicated case of the uncertainties of
Engine Test Calibration coefficients Cg, Cps, Cx
is described in Section 3.0.

2.5 The use of different thrust measurement
methods

A number of distinctly different methods
should always be provided for in-flight thrust
measurement. Everyone accepts the wisdom of plan-
ning a certain amount of redundancy so that if a
measurement vital to one method were to fail, then
another option could take its place.

There is a tendency for any one organisation
to prefer its own method. For example, Reference 6
speaks of the "Lockheed method" (which happens to
be "linked AP" in our termimology) and of the "P
and W method" (which happens to be "unlinked AP",
However, competition is useful in that the variety
it stimulates will help to reveal the extent of
hidden systematic errors.

During the earlier stages of a new project a
large number (20 say) of different combinations of
possible methods should be considered. This number
would be reduced to manageable size (10 say) by
eliminating the least attractive methods with the
aid of a Sensitivity Survey. Table 2.1 illustrates
the principle by comparing Option 1 against Option
5, but in practice all the possible options should
be shown on the same table. Option 1 uses "AP" for

Fg , but Option 5 uses "W JT", while both obtain
mass flow from fan chics. There is no attempt at
this stage to introduce Error Classes into the
table, but the "Instrumentation'" is separated from
the "Calibrated Coefficients".

If one of these options had to be thrown out,
the axe would fall on Option 1 with its EL(Fy) =
4.2% due to instrumentation, compared with 2.3% for
Option 5.

Another use of the Sensitivity Survey table is
to direct early attention to the critical items of
measurement. In the case of Option 1 the most crit-
ical item is nozzle inlet pressure Pg; - a modest
2% EL in Pg, produces 3.6% EL in Fy due to the large
influence coefficient of 1.8. 1In the case of Option
5 the most critical item is reheat fuel flow - the
influence coefficient is only 0.5, but the large EL
in Wgp of 4% produces 2% EL in Fy. Thus effort can
be directed to improve these critical items of ins-
trumentation at an early stage of a new project.

However, there is more to selection of method
than the features examined in a sensitivity survey.
The validity of the various methods has also to be
considered, ie does the calibration which has been
derived in the closely controlled conditions of an
engine test bed actually apply to the flight situa-
tion? But it is not possible to discuss this
further in the present Paper.

Therefore, when flight testing begins, a modest
number of options should remain available for use.

TABLE 2.1 Example of simple Sensitivity Survey (Single engined fighter aircraft)

Flight condition: supersonic cruise with reheat on

Type of output: y = Fy
FG
7 ratio = 1.6 Option 1 Option 5
N "AP" method "W JT" method
Error Limit EL x IC e EL x IC
Input parameter Xx;j EL (x;) IC(y:xi) 7 IC(y:xi) p
Calibrations etc
Full scale nozzle Cy carpet 1.5% - - 1.6 2.4
Full scale nozzle Cg carpet 1.57% 1.6 2.4 - -
Full scale nozzle Cpy carpet 1.5% - - - -
Fan chic 1.5% -0.6 -0.9 -0.6 -0.9
Fuel cal. val., LCV 1.0% 0 0 0.5 0.5
% EL (y) = [z [ZEL x 1C 12 -+ - 2.6% - 2.6%
Instrumentation
Eng. face Py, 1.0% -0.6 -0.6 0.3 0.3
Eng. face Ty, 1.0% 0.4 0.4 -0.2 -0.2
Free stream Pso 0.5% 0.2 0.1 0.2 0.1
By-pass duct AP 3 1.07% - - - =
By-pass duct Pgsis 1.07% 0.9 0.9 -0.5 0.5
Noz. inlet Pg, 2.07% 1.8 3.6 0.4 0.8
CC fuel flow WpC 2.0% - - 0.1 0.2
RH fuel flow WFR 4,07 - - 0.5 2.0
LP spool Ny, 0.5% -1.1 -0.55 0.5 0.25
Noz. area Ag 2.0% 0.9 1.8 0.1 0.1
Power offtake Q 0.5% - - o] 0
Services bleed Wy 1.0% - - -0.4 -0.4
2 EL (y) = [z [7EL x 1C ]? -> - 4.2% - 2.3%
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The problem is how to derive a single figure for
thrust which goes forward to the drag analysis.
Careful comparison of different options often leads
to elimination of several of them due to malfunc-
tioning instrumentation or obvious invalidity of
the method. In the end, however, a few different
answers will remain which the engineer will have
considered both free of instrumentation error and
of equal validity. Traditionally a single prefer-
red method is selected (perhaps with the aid of the
Sensitivity Survey Table) and the results from this
one method only are published. Often, however,
there is controversy over the rival result of an
alternative method. This situation can be avoided
by the use of the Weighted Mean Value, which com-
bines the results of all the different options in
the most efficient way.

Suppose y, is the result of the rth option
which has the Error Limit, EL(yry), then the statis-—
tical weight of that result is:

T [Eeop)

The Weighted Mean Value of n different results is

n n
Y T Zwr Ty Zwr 21
r=1 r=1

where the Weight of the Weighted Mean is

n

M = Zwr (22)

r=1

and the Error Limit of the Weighted Mean is:

Figure 2 illustrates an example where the .results
are Drag Coefficients given by 3 different options
of thrust measurement in flight. In example (i)
the 3 Cp results of 0.050, 0.055 and 0.060 have
similar Uncertainties or Error Limits of *9 per
cent, +10 per cent and #11 per cent., The Weighted
‘jean Drag Coefficient from Equation (21) is:

ST X 0.050 + Tgr * 0.055 + 7 X 0.060
Chom = 1

0.0544 (24)

L}

and the Uncertainty from Equation (23) is:

1
EL (CD,WM) =TT 1T = 5.7Z2  (25)

ot i 1
Thus, in this example, as illustrated in Figure 2
(i) the Uncertainty of the Weighted Mean is much
less than that of any of the single options and
this is always the case when separate options have
similar Uncertainty.

In example (ii), the 3 Cp results are the
same as in example (i) viz: 0.050, 0.055 and 0.060,
but this time Option 1 is supposed to have a much
smaller Uncertainty of #5 per cent, than the other
two, *20 per cent and %25 per cent. The Weighted
Mean Drag Coefficient from Equation (21) is:

1 1 1
c . -ST x 0.050 + -56-2- x 0.055 + 353 x 0.060
D’WM 1 + .....].'_. + ._1_..
BT T 207 T 752
= 0.0506 (26)

and its Uncertainty from Equation (23) is:

BL (v = ;;—; (23)
1 -
EL (Cp ) = T Tt 4.8% (27)
52 T 207 2%
EL(Cowm)™=57%
Weighted mean of these 3 results = 00544

§ - [ ' JEL(CD3) =11%

gl '] OPTION 3
=38 60
©E EL(Cp2)=10%
g : OPTION 2
o -]
E.3
w g

90

2

(S

Flight test Cp results
| 1 | ] 1 | e
0-050 0-060 0070

FIG.2 (i) WEIGHTED MEAN FLIGHT TEST RESULT
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EL(Cowm) = 48°%

Weighted mean of these 3 results = 0-0506

- JEL (Cp3) = 25%
3 -
= OPTION 3
k=
g
= g iA EL(Cp2) = 20%
L4 OPTION 2
g | 3=
g "g EL(Cp1)=5%
S OPTION 1
a
(@)
& R
\ Flight test Cp results
t { i 1 } | { P

FIG. 2 (ii) WEIGHTED MEAN

Thus, in this example, as illustrated in Figure 2
(ii) the Uncertainty is only a little better than
that of the best option (Option 1), while the
Weighted Mean Drag Coefficient is very close to
that of the best option.

The lesson from example (ii) is that if any
one option clearly has a much smaller Uncertainty
than the rival options, then this one good option
can be accepted straight away as the definitive
result (although it would do no harm to calculate
the weighted mean). But the situation is more
likely to be as example (i) in which no single
option is clearly the best. In this general case
the Weighted Mean will produce a valuable reduction
in the Uncertainty of the Drag Coefficient from the
flight tests.

3. REFINED THEORY OF UNCERTAINTY PREDICTION FOR
TN-FLIGHT THRUST MEASUREMENT OF A TWIN~ENGINED
AIRCRAFT

3.1 Engine test calibration uncertainty

The object of an engine calibration in a test
facility is to establish correlation curves between
instrumentation readings (which readings can also
be taken in flight) and the thrust and mass flow
(which can not be measured directly in flight).

The most convenient correlations are in the form of

the coefficients Cg, Cps and Cy plotted against NPR,
Thus:

o | s
¢ As Pso As Pso
L. _JTest bed measurement|| Ideal
. _ (28)
C - Wy \/T; ti\ff
Ds Ag L AP,
- JTest bed measurement) L Ideal
(29)
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0-060

0-070
FLIGHT TEST RESULT

o e
Ws J/Ts WJT

All the various measurements X; are shown
column-wise in Table I, with the influence coeffic—
ients IC(Cg:xj) in the next column. Estimates of
Error Limits of each x{ for the 3 Classes I, II, III
are multiplied by the respective ICs and inserted
separately for each Class. Note that EL(Cpp) for
the airmeter only appears as the fossilised Class
III as already explained in Section 2.4, The cal-
orific value of the fuel also only occurs as Class
ITI.

Cx

Ideal
(30)

Test bed measurement

The uncertainty of a spot point measurement of
the co-fficients Cg, Cpg and Cy are calculated by
RSS within each Class, thus:

TABLE ‘3.1 Single engine calibration spot point
uncertainties ’
Class I |{Class II | Class III
%ZEL (spot point Cg) 0.41 0.99 1.15
%ZEL (spot point Cpg) [ 0.44 1.01 1.14
ZEL (spot point Cy) 0.16 0.25 0.26

However, the uncertainty of a spot point is

not transferred to flight.

Rather, it is the uncer-

tainties of the coefficient curves which are trans-

ferred.

n = 4 test points on each of m
runs, then the uncertainties are reduced by the
factors 1//n and 1//m to become the values shown in

Table 3.2.

Assuming that the curves are drawn through
4 different test



TABLE 3.2 Single engine calibration curve position

uncertainties
Class | Class | Class RSS
I 11 111 all classes
ZEL (Cg curve) 0.21 0.49 1.15 1.5
ZEL (Cpg curve) | 0.22 0.50 1.14 1.4
ZEL (CX curve) 0.08 0.13 0.26 0.3

Note that Class III uncertainties are not re-
duced by the curve-fitting process.

The way in which the different Classes are
combined depends upon whether ''linked methodology"
is to be used in flight as discussed in Section 3.2
and also upon whether both engines, or only one
engine, are calibrated in same test bed, (as dis~
cussed in Section 3.3).

3.2 Linked thrust methodology applied to engine
calibration coefficients (single-engined

aircraft)

Assuming that mass flow in flight, as well as
gross thrust, are both to be found by nozzle coef-
ficients then this is an example of “linked method-
ology", such that common errors in Cg and Cp; (such
as nozzle area measurement in the test bed) will be
partially cancelled in flight. This benefit would
be lost if mass flow were to be derived from some
other correlation, say from compressor chics, with
gross thrust coming from nozzle coefficients.

Treating Cg and Cpg separately to begin with,
their uncertainty is transferred to flight accord-
ing to the following equations:

(i) From Cg
EL (F,) EL (C.) EL (C.)
— - (FyiCp) X ——t = A x ——
N G G
31
(ii) From Cpg
EL (FN) EL (ch) EL (CDS)
5 = 10 (FiCp) X ——— = BX—F—
N D8 D8
(32)

However some of the test bed errors causing
EL (Cg) are the same ones that cause EL (Cpg) so
some partial cancellation or reinforcement is to be
expected. Cg and Cpg are not independent and so a
root-sum-squares combination is not valid,

Let us examine the problem numerically. Typ-
ically A = 2, and B = ~1,3. Now suppose ALL the
error in Cg and Cpg; is due to an error in nozzle
area which affects Cg and Cpy equally. If Cg and
Cps are both misplaced by this error of up to 1 per
cent then the error in calculated net thrust will
be up to:

(2x1) + (-1.3 x1) = 0.72 33

On the other hand, if Cg is misplaced by up to 17
due entirely to load cell error which does not in-
fluence Cpg, and Cpg is similarly misplaced by up
to 17 due entirely to fuel flow error which does
not influence Cg, the likely error in calculated
nett thrust is given by

j(z x 1) + (-1.3 x 1)2 = 2.4% (34)

Considering all the test bed errors, some of
them affect both C; and Cps s some affect,CG but not

EL (FN)

EL (FN)

Cps» while others affect Cpy but mot C;. Thus Cg
and Cpg are partly independent, partly non-indepen-
dent, and so the root-sum—squares combination is
invalid with separate Cg and Cp; terms. To get
round this problem it is necessary to go right back
to the test bed errors and note how they are propa-
gated through the Cg and Cpy curves all the way to
the flight result Fy. Thus for a single test bed
parameter, Xj:

x.) x

i

EL (F)
(35)

FN IC ((A CG + B CDs) :
flight

EL (xi)

X.
test bed

The explicit non-independent or common relationship
between Cg and Cp, is thus taken fully into account
in Equation (35) and so the remaining Independent

elements of the n different xj parameters may now be
combined by RSS, thus:

EL (Fy) ki )
__.._FN = ZIC((ACG+BCD8) 2 xg ) x
flight i=1
-2
EL (xi)
—— (36)
X,
: test bed

A more convenient form of Equation (36) can
be shown to be:

~ 2
EL (F,) EL (C.)
R (A2 + AB) G .
F C
N L G
- 2 2
EL (C. ) EL (C))
(B® + AB) Y
CDB X

37)

In this equation the common errors in C; and Cpy are
cancelled by the "Cy" term, rather like a covari-
ance in a formal statistical treatment.

Referring back to the calibration curves uncer-
tainties in Table 3.2, near the end of Section 3.1:

EL (Cg curve) = 1.5%
EL (Cpg curve) = 1.47 all Classes combined
EL (Cy curve) = 0.37

and using the typical values of A = 2 and B = -1.3
to insert in Equation (37)

=]1.4x[1.5]’- 0.91 x [1.4]2+ 2.6 x [0.3])2
1.3% (38)

If it had been assumed that all the errors in
Cg and Cpg were Common then we would have:

Fy

= (2 x 1.5 + (-1.3 x 1.4) = 1.27% (39)

FN
On the other hand, if it had been assumed that
errors in Cg and Cp, were completely Independent

then we would have:

EL (F)
__F__.N_. =j22 x [1.5]% + (-1.3)% x[1.4]% = 3.5%
N
(40)
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This latter figure corresponds to the "old
theory" which is still in common use. If error in
Cc and Cp, were the only ones to consider, then
the "old theory" would be extremely misleading. In
practice, however, the wrongness is alleviated by
the impact of other effects.

3.3 Linked thrust methodology applied to engine
calibration coefficients (twin-engined

aircraft

In a twin—engined aircraft some errors are
Common to both engines and some are Independent.
1f the uncertainty of net thrust for a single eng-

(F
ine were N = 17, say, then
Fy
(i) assuming completely Common errors
EL (FNl + FN2> 1,1 . L7 )
Total Fy 2 2 ;
(ii) assuming Independent errors
EL (FNZ +FN2) (}-2+ -];2 - 0.77
Total F 2 2) O~
(42)

The distinction here between Common errors and
Independent errors of two engines is not as drama-
tic as it is for the calibration curves of a single
engine as described in Section 3.1.

Some of the errors of Fy in flight are Common
to both engines -~ ambient pressure Pg, for example
is a Common airframe reading. Other errors are
Independent - eg the individual engine fuel flow
meters.

In this Section we are concerned with a more
subtle distinction between Common and Independent
errors which occurs with respect to the calibration
curves of two engines calibrated consecutively in
the same facility. It can reasonably be expected
that the Class III errors of the test bed remain
constant during both engine calibrations, so that
Class III calibration uncertainty must be consider-
ed as Common. By definition Class I and II

calibration error must be considered as Independent
of the other engine.

Splitting the engine calibration errors thus
we put:

(al) "Independent of other engine" (ie those due to
Classes I and II in the ATF)

(a2) "Common to both engines" (ie Class III in the
ATF) .

Another category (b) applies if only that one
engine is calibrated in the ATF (other engine is
SLSTB). Category (e) relates to the "old theory"”
assumed Independence between Cg and Cpg .

of

The cglculations, making use of Equation (37)
are shown in Table II with values of influence coef~
ficients for the flight condition of 0.9 MN at low
altitude,'high power", dry,

A IC (Fy : Cg) 2.18
B IC (Fy : Cpg) -1.53

Values for ZEL (Cg curve), %ZEL (Cpg curve) and

ZEL (C4 curve) for the 3 classes are taken from the
bottom of Table I for use in Table II. The results
of the calculations are shown in Table 3.3 below:

"

TABLE 3.3 Uncertainties of linked calibration curves
of Cg, Cps and Cx (one engine of twin-

engined aircraft

EL (1 engine

Case spot point Fy)
(al) "Independent of other engine" 0.447
(a2) "Common to both engines' 0.88%
(b) "Independent of other engine" 0.982
(e) "0ld theory", Independent 3.387

Another category (c) applies if only that one
engine is calibrated on the SLSTB (other engine in
ATF). For this the uncertainty of Fy due to Cg and
Cp is arbitrarily put 3 times that of category (b).

TABLE 3.4 Uncertainty prediction of in-flight thrust of twin-engined aircraft (due only to engine

calibration)
Calibrations % EL (Spot point twin engine total Fy)
Engine 1 Engine 2 "High Power' "Low Power"
&—— same ATF —> ] [o 44]2 2 i
[(al), (a2) (al), (a2) + 0.88 = 0.9% 1.67
2
[ATF () SLSTB (c) ] \/[0598] . [3 x 0. 98] vo = 1.7 5.7
¢——same SLSTB —— ] [3 x 0.44]2 [ ] _
[(dl)’ e . @) |5 + 3 xo0.88]2 = 2.8 4.92
. 2
[(L—}i;fferent ATFib;——é ] [?}§§] +0 - 0.77 1.27
¢—different SLTBs~—~§] [3 x 0.98F -
[ © © = +0 = 2,12 3.67
Same ATF "old theory" ] 3.38 - 4
[ (e) l (e) > = 2.47 2.3%
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Further categories (dl) and (d2) apply if both
engines are calibrated on the SLSTB. The uncer-
tainties are put 3 times those of (al) and (a2).

If the
uncertainty

error in flight was due entirely to the
of Cg, Cpg and Cy transferred from the
engine test calibrations then the uncertainty of
total Fy of the twin-engined aircraft would be as
in Table 3.4, calculated with Equation (9) or (10)
of Section 2.3.2.

Results from a similar calculation for a "low
power'" flight condition are entered in a column
alongside the "high power' ones for comparisen.

From inspection of the above results, due
entirely to engine calibration uncertainties it is
possible to formulate provisionally the conclusions
listed in Section 4.0. These will be checked
against the complete prediction in Section 3.4,
which also takes account of uncertainties of instr-—
umentation readings in flight.

3.4 Complete prediction of in—flight thrust
uncertainty

It is necessary to calculate the uncertainties
of each single engine (Part 1 of Table III) before
dealing with the total thrust of the twin-engined
aircraft (Part 2 of Table III).

The uncertainties of the linked calibration
curves of Cg, Cpg and Cy transferred from the
engine test bed are entered near the top of Table
IIT. Just as the airmeter Cpp calibration errors
were fossilised into a Class III uncertainty upon
transfer for engine testing (see Table I), in a
similar way the engine calibration errors are fos-
silised into a Class III uncertainty upon transfer
for flight testing in Table III. The extra compli-
cation is that they are separated into the two
columns: '"Independent of the other engine"
or "Common to both engines"

Five possibilities, (a) through (e), are considered
for the calibration of one engine vis—a-vis the
other.

The uncertainty estimates due to instrumenta-
tion readings are also entered in Part 1 of Table
III. In the case of "Aircraft instrumentation',
the uncertainties are entirely "Common'" to both
engines. In the case of "Engine instrumentation',
the Class I uncertainties are entered as entirely
"Independent', the Class II are split between
"Independent" and "Common' while the Class III are
put as entirely 'Common'.

With the particular thrust method employed,
the nozzle inlet pressure was found from the wall
static readings, Pg;. The pressures Py and Py,
were not used and so their influence coefficients
are zero with this particular thrust method.

The RSS combinations of the separate classes
are shown at the bottom of Part 1, keeping ''Indepen-
dent'" apart from '"Common".

Part 2 of Table III shows Vvarious possible
engine calibration arrangements. Where the "Inde-
pendent” ELs are the same for each engine, the
1/ J% factor can be applied as shown in Section
2.3.2, Equation (9). But with combination '"b + c"
it is necessary to use Equation (10) to give the
"Independent" total for the aircraft. Thus the
"Independent" ELs are combined with the "Common" by
RSS to give the uncertainties of the twin engine
spot point Cp = (Fy; + Fynp)/qS.

The results are copied into Table 3.5 below
together with similar calculations for a "low power"
flight condition at low Mach number, low altitude.

TABLE 3.5 Summary of complete prediction of twin
engine in-flight thrust uncertainty

Calibrations zsgtt(§212teg§;ne
. " g "L
Engine 1 Engine 2 Piéi?" Powzz"
i same ATF ——>
.67% 2.3%
(&5 @37 @ @ | L-6%
[A’I‘F ®) SLSTB (c)] 2.07 3.22
¢~—same SLSTB ———> ]
3.1% 5.17%
[(dl) @2) | @1) (d2) %
¢« different ATFs ——9] 1.5 2.0
{ (b) l (b) e
[é—different SLSTBs —> ] 2.4% 4.07
() (e) e
[séme ATF "old theory ] 2.7% 2.8%
(e) | (e) )

These uncertainties are somewhat higher than
those due to engine calibrations alone (see Table
3.4) but the same conclusions can be drawn as listed
in Section 4.0 below.

4. CONCLUDING REMARKS

4.1 Comparison of old theory and new theory

The "old theory" [ (e) + (e)] in Table 3.5
seriously overestimates the in—flight thrust uncer-
tainty with two engines calibrated in the ATF, com-
pared with the "new theory" [(al), (a2) + (al), (a2)].
This is because the "old theory' wrongly assumes
complete independence between Cg and Cpg whereas in
fact there is a significant "common" element when
using "linked methodology".

In mitigation of the "old theory", the addi-
tional assumption of complete independence between
two engines produces a small underestimation of in-
flight thrust uncertainty, and it was hoped that
these opposing effects would cancel out. But when
realistic numerical values are used the overestima-
tion part of the "old theory" is found to swamp the
underestimation part.

4,2 Choice of ground facility for engine

calibration

Calibration of just a single engine in an ATF
is a significant improvement over the case of no ATF
calibration, should it be impossible to calibrate
both engines in the ATF (compare (b + c) against
@+ 4d)).

A calibration in different facilities of the
same type ie 2 ATFs or 2 SLSTBs gives a marginal
improvement in accuracy.

4.3 Effect of engine setting

Calculations at high power are significantly
more accurate than those at low power (except for
the anomalous "old theory").
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the shortened notation for which is *EL(x). Pro-
cedures will be described for finding the Error
Limits of a result y, EL(y), where y is a calcula-
ted result with many input measurements, Xj.

The Standard Deviation, ¢ (x) can sometimes be
estimated from observed sample readings of x:

> g -0
&

This is more likely to be feasible in the case of
Class I errors which are by nature amply observable.

(A2)

\ -20(x) + 200 (x),=+ EL(x)
Relative
frequency Prob. that x
of fies between
occurence Aand B
J!fi (x)
/ dP—F : \
B .
0 % I - A B X oagt
d:!._ ¥ 4
X—-EL(x) X+ EL(x)
Lower Mean Upper
Error Yalue Error
Limit Limit

FIG.A1 A PROBABILITY

When the shape of a distribution is known, the
standard deviation is given by

(AD)

If the distribution is Gaussian, then about 95 per
cent of possible values of x lie within the range
+20(x). 1If the distribution is Rectangular, then
100 per cent of x values lie within #20(x). The
present text will deal with such "2¢" Error Limits,
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In the case of Class II and Class III errors, these
are less and less observable and it becomes neces-
sary to make shrewd guesses, backed by whatever
evidence is available, of what the Error Limits
might be without the benefit of a o(x) calculation.

A2. Combination of Error Distributions by Root-

Sum-Squares

A simple example of the combination of Error
Distributions by Root-Sum-Squares (RSS) is given



-20 (XQ)

+ 20 (xaq)

eg. core engine
fuel fiow

Xay

L

Xa+EL(xq) Xa

+ 2cr(xb)_

eg. reheat
fuel
flow

Xb -EL{xp)

L

Xb+EL(xp) Xb

eg. total

fuel
flow

-

y=Xa+xp

FIGA2 ROOT SUM SQUARES COMBINATION OF GAUSSIAN
AND RECTANGULAR DISTRIBUTIONS

by the sum of a core engine fuel flow x, having a
Gaussian distribution, say, and a reheat fuel flow
xp having a Rectangular distribution, say, as shown
in Figure A.2.

In each case the Error Limits of x, #EL(x),
are identified as estimates of the "2¢" bounds,
+20(x).

If an individual value of the core engine fuel
flow x5 (say x,3) is added to an individual value
of the reheat fuel flow x}, (say xp,) the result is
a value of total fuel flow:

o= X, tx, (a3)
We do not usually know this particular exact result

but when all possible results are considered the
mean value of total flow is:

T . T
y ' %
and the standard deviation of y is:

(A4)

o(y) = olx, +x) = \/02 (x,) + a? (x) (a5)
and the distribution of y will tend towards
Gaussian as indicated in the lower part of Figure
A2,
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A3. Combination of Independent and Common Errors

(including use of Influence Coefficients

Considering first the simple example of the
sum or difference of two items:

y = (A6)
Yy = X = Xp (A7)

where for example x, could be a barometric pressure,
Xy, a gauge pressure, making y the absolute pressure
(either super—atmospheric or sub-atmospheric).

xa+xb

The exact values of x; and x} are not known,
hence exact y is not known. But the mean value is:

= %, + R (A8)

or = X, - % (49)

o<

If the errors in x, and xp, are Independent
then the Error Limit of y is:

B () = /F. ap] + [ o] o

This root-sum~squares combination in Equation (Al0)
would also apply even if the plus sign (+) of
Equation (A6) were replaced by the minus sign (-)
of Equation (A7).




If the errors in x, and X are non-Independent
or Common i.e. linked to each other by some defin-
ite relationship, then the Error Limit of y in
Equation (A6) is:

EL (y) = EL (x)) +EL (xb) (A11)

Supposing now that the plus (+) of Equation (A6)
were replaced by the minus (-) of Equation (A7)
then the sign of Equation (All) would also change
from (+) to (-):

EL (y) = EL (x)) - EL (x) (A12)
These ideas are illustrated in Figure A3,

The important feature to note is that non-
Independent or Common errors are self-cancelling
when y is the difference of x5 and x,. This
produces a much smaller Error Limit of y than in
the case of Independent errors, which is the essen—
tial explanation of the advantages of "Linked
Methodology" (see Section 2.3.3). Common errors
are not always self-cancelling however. For
example, in a multi-engine aircraft the Common
errors are additive (see Section 2.3.2).

The above theory can be extended to the
usually more complicated case where y is a function
of several items xj:

y = £ (xi) (A13)

Then, providing the errors are completely
Independent the Error Limit of y is:

7
EL (x.)
EEY_(L). = /Z Ic (y:xi) x —;(1—1—- (Al4)
i

where IC (y:%xj) is the Influence Coefficient of xj
relative to the result y:

b

Ic (yix,) = %i—i x —};i (A15)
An alternative definition of Influence Coefficient
is the percentage change in y for a 1 per cent
change in xj, which can be found by running a com-
puter calculation with successive numerical per-
turbations in the x; inputs.

If the errors in the various xj are linked by
a definite relationship then instead of Equation
(Al4) the Error Limit of y is given by

EL (Xi)

X.
1

EL &) Z IC (yix) X (A16)

y
i

Real situations are complicated by a mixture
of both Independent and Common errors. By going
back to very basic inputs and also going on to the
final output for the Influence Coefficients (e.g.
don't stop at y = Fg, but go on to y = Fy, or even
¥ = Cprag), then it should be valid to apply the
root~sum-square combination of Equation (Al4).

@3 Controller, HMSO, London, 1976
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If Xp errors independent of xa

If xp errors linked to xa

Distribution of xq

+ EL(y)
22 units

/Distribution of y=Xg-Xp

EL(y) by RSS from EQ (A10)

1 1 I 1 i
0 xa.
~EL(x [+ EL(xb) = 1 unit]
: Distribution of xp
i 1 I 1 i 1 1 1 1 /] A 1 pr—
0 5 10 15 Xb
r
o + EL(y)
Distribution of y=xq+xp  -ELi(y) { |22 units
EL(y) by RSS from EQ (A10)
t I I 1 1 i 4 1 1 ] . 1
{0 5 10

Distribution of y=xq + Xbp -EL(y)

Y ————

+EL(y)
3 units

i 1

€L (y) by addition from EQ(At1)
L 2 Il [ 2 1 2 3
0 5

EL(y) by subtraction from EQ (A12)

1 4 1 1 ] i [ { [

FIG.A3 COMBINATIONS OF INDEPENDENT AND
NON INDEPENDENT ERRORS
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Airmeter calibration
Class I

Class 11
Class IIi

TABLE I.

~———> EL(mean Cpp curve) =

ENGINE TEST CALIBRATION UNCERTAINTY

057 {

This EL fossilised as Class III }
before transfer for use in Engine Tests

Flight condition =

Single-engine calibration uncertainty

0.9 MN at low altitude, "High-Power', Dry

Input parameter 1C(Cq:x:) Class I Class II Class III
Xi LAMGEXL FEL(x{) 1C x EL ZEL(x1) IC x EL JEL(x3) = IC % EL
CD4 0.2 pu— — — 0.5 0.10 4
Pop 0.1 0.02 0.00 0.11 0.01 0.05 0.01
APA 0.1 c.10 0.01 0.37 0.04 0.21 0.02
TtaA -0.1 0.09 -0.01 0.37 ~0.04 0.40 -0.04
PCELL -0.5 0.04 -0.02 0‘17 -0.08 0.08 -0.04
Pty 1.4 0.01 0.01 0.10 0.14 0.05 0.07
Te, 0.1 0.09 0.01 0.37 0.04 0.40 0.04
Pgry ~1.2 .02 -0.02 0.07 -0.08 0.03 -0.04
As -1.0 0.40 -0.40 0.97 ~-0.97 1.13 -1.13
Fi, 0.3 0.23 0.07 0.30 0.09 0.61 0.18
Wree ~0.0 0.70 -0.00 0 o] 0.05 -0.00
WrR 0 0 0 0 0 0 0
CALVAL 0.0 e —— — e 0.15 0.00
ZEL (Spot Point Cg) = [I(IC x EL)? | ——nu 0.41 —_— 0.99 _— 1.15
0.41 0.99
ZEL (Cqy curve) —_— = = (0,21 — —== = 0.49 —— 1.13
G 7 J
Results of similar calculation for Cps
ZEL (Spot Point Cps) — 0.44 _ 1.0l — 1.14
0.44 1.01
ZEL (Cpg curve) e = 0,22 — = = 0.50 | —— 1.14
Ds ND /A
Results of similar calculation for Cx
ZEL (Spot Point Cy) 0.16 0.25 — 0.26
0.16 0.25
ZEL (Cy4 curve) S == = 0.08 _— — = 0,13 ——- 0.26
* J4 J4

GO TO TABLE 11

TABLE II. UNCERTAINTY TRANSFER OF LINKED CALIBRATION COEFFICIENTS FROM ATF TO FLIGHT
(ONE_ENGINE OF TWIN-ENGINED AIRCRAFT)
Flight condition: 0.9 MN at low altitude, "High-Power", Dry
Equation (37)
Case From Table I (Az_; ABY[ ZEL (CG)]Z ]
;e + (B® + AB)[ ZEL (Cpg)] ZEL(Fy)
ZEL (separate coefficients) - AB[ZEL (Cy)]>
[ (al) Independent |ZEL (Cg) =0.21% + 0,49 = 0.54 (4.75 - 3.36)0.54% = 0.41
3‘5 of other engine |ZEL (Cps) = 0.22%2 + 0.50° = 0.55 + (2.34 - 3.34)0.55% = -0.30
& “l(Classes I and II) |ZEL (Cx) = ./0.087 + 0.13% = 0.15 + 3.34 x 0.15° = 0.08
o o —t J——
s 0.19 | JO.19
§ = 0.44%
2 (a2) Common to ZEL (Cg) = 1.15 (4.75 = 3.34)1.15* = 1,87 A
§ m | both engines ZEL (Cpg) = 1.14 + (2.34 - 3.34)1.14% = -1.31
@ e | (Class III) ZEL (Cx) = 0.26 + 3.34 x 0.267 = 0.23
a 0.77 | JO.77
CIGRN = 0.887
(b) Only one engine cal- 3 5 5 PO
ibrated in ATF ZEL (Cg) =.0.212+ 0.49%+ 1.15% = 1.27 | (4.75 = 3.34)1.272 = 2.27
*. Classes I, II and 7EL (Cps) =./0.227+ 0.50%+ 1.14% = 1.26 |+ (2.34 - 3.34)1.26% = -1.61
iiieiniﬁpfgie“t of ZEL (Cx) = /0.087+ 0,137+ 0.26? = 0.30 |+ 3.34 x 0.302 = 0.30
& 0.96 | J0.96
= 0.98%
(c) Both engines "01d Theory"
calibrated in ATF ZEL (Cg) = 1.27 4.75 x 1.27° = 7.77
"0ld Theory" ZEL (Cps) = 1.26 2.34 x 1,26 = 3.71
11.37 | Jf11.37
= 3.387%

These linked calibration coefficient uncertainties become
"fossilised" into Class III upon transfer from ATF to flight

GO TO TABLE III
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TABLE 1II COMPLETE PREDICTION OF IN~FLIGHT THRUST UNCERTAINTY FOR TWIN ENGINE AIRCRAFT

Flight condition: 0.9 MN at low altitude, "high-power", dry

Part 1 Single engine Cp = ﬁ“_
qS
Class I Class II Clasy III
Input parameter r o x) | PR [ ToxEL [ IO« EL| L | I0xBL [I0xEL | L IC x BL | 1C % EL FROM TABLE 11
*i Or 2 x4 Independent Common Independent | Common Independent | Common
Linked calibration Ok 0.88 | ¢~ a If both engines calibrated in ATF
curves of Cg, Cpss Cx 0.98 - ¢«—b If only this engine calibrated in ATF
transferred from 3 x 0.98 - é—C If only this engine calibrated in SLSTB
Engine Test Bed 3 x O.4k 3x 0.88 | «—d If both engines calibrated in SLSTB
(see TableIl) \/ \ 3.38 - | €-e Both engines calibrated in ATF (Old Theory)
. Pga ~0.16 0.5 -0.16 C.1 ~0403
Aireraft
instrumentation, Tty =0.09 | 1.0 -0.18 1.0 ~0.18
Pty = Pgo) ~0.47 | 0.5 ~0.47 0.1 -0.10
Pge = Pig 0.5 0.26/2 0.26/2] 0.25 0.13
Pes 0 - - - - - - -
Ptia ° . = - - = 75 - s = -
?:S::\exmentation he 0-65 o4 0-26 - 0.65/;- 0'65/; 1.0 0-65 RSS all classes JS[IC x EL]®
Wroo 0.35 1.0 0.35 1.0 0.35/¥2 0.35/M2| © o - #EL(Single engine spot point Cp)
YRy - - - - - - - - ;
Lov 0.35 0 0 0 0 o 0.5 0.18 Independent Common to Combined
' -0.13 0.5 -0.06 0.5 -0,06/‘/5 -0.0S/J'Z_ 0.5 -0.06 of other engine | both engines
‘'RSS separate classes a 0.51 0.50 0.56 0.7? O.b4 Tath a—3 0.87 1.46 1.70 ,ATP
b 0.51 0.50 0.56 0.77 0.98 0.72 b 1.24 1.17 1.70
= Lﬂjc x ELJ* e 0.51 0.50 0.56 0.77 2.9% 0.72 | c—y 3.0k 1.17 3.26 Jsrsms
. d Q.51 0.50 0.56 0.77 Ta32 2474 d = 1452 2.89 3.26
= %EL(1 engine spot point Cp) e 0.51 0.50 0.56 0.77 3.38 0.72 e—> 3.46 1.17 3.65}~ATF
i . FN; + F}&
Part B: Twin engined aircraft Cp = = %EL (Twin engine spot point Cp)
2 engires calibration in ATF a+a ) {[0.87/‘/5]’ + 1.46”}1’2 = 1,58%
1 engine calibration in ATF + 1 engine in SLSTB b+te — {[1.2#/2]’ + [:3.04/2}g + 1.17"}43 = 2,02%
2 engines calibration in SLSTB d+a -y {h.s2/ /27 + 2,807 = 3.08%
2
Each engine calibration in different ATF bab . —y [Reas/ BT+ vl = 1.46%
Each engine calibration in different SLSTB cte s B4/ /27« 1.172} = 2.45%
2 engines calibration in ATF (0Old Theory) e+e . {[;’;.#6/\/5] 2, 1.172'1!2 = 2.71%

Fossilised errors




